製造業関連情報総合ポータルサイト@engineer
WEB営業力強化支援サービスのご案内
製造業のための技術系セミナー/書籍/通信教育/雑誌
技術情報協会はセミナー・出版・通信教育を通じて企業の最前線に立つ研究者、技術者をサポートします!
イベント

【Live配信セミナー 7/16】人工知能による異常検知技術とその導入、実用化のポイント

  • このエントリーをはてなブックマークに追加
  • @engineer記事クリップに登録
セミナー情報  / 2021年05月04日 /  食品・機械 試験・分析・測定 建設・プラント
イベント名 人工知能による異常検知技術とその導入、実用化のポイント
開催期間 2021年07月16日(金)
10:00~17:00
会場名 Zoomを利用したLive配信 ※会場での講義は行いません
会場の住所 東京都
お申し込み期限日 2021年07月15日(木)15時
お申し込み

<セミナー No.107503>

【Live配信セミナー】
人工知能による異常検知技術と

    その導入、実用化のポイント

 

★故障・異常データがない、少ない場合や未知の異常・故障は検出できるのか!
 いよいよ実用段階に入ったAIの導入、使い方のポイントを詳解します!


----------------------------------------------------------------------------------

 

■講師
【第1部】大阪大学 産業科学研究所 准教授 福井 健一氏
【第2部】日本電気(株) AI・アナリティクス事業部 シニアマネージャ 相馬 知也氏
【第3部】(株)東芝 研究開発センター 知能化システム研究所

            システムAIラボラトリー、スペシャリスト 山口 晃広氏

 

■聴講料:    
1名につき66,000円(消費税込み、資料付) 
1社2名以上同時申込の場合1名につき60,500円(税込)

大学、公的機関、医療機関の方には割引制度があります。
詳しくはお問合せください。


■Live配信セミナーの受講について
・本講座はZoomを利用したLive配信セミナーです。セミナー会場での受講はできません。
・下記リンクから視聴環境を確認の上、お申し込みください。
 → https://zoom.us/test
・開催日が近くなりましたら、視聴用のURLとパスワードをメールにてご連絡申し上げます。
 セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
・Zoomクライアントは最新版にアップデートして使用してください。
 Webブラウザから視聴する場合は、Google Chrome、Firefox、Microsoft Edgeをご利用ください。
・パソコンの他にタブレット、スマートフォンでも視聴できます。
・セミナー資料はお申込み時にお知らせいただいた住所へお送りいたします。
 お申込みが直前の場合には、開催日までに資料の到着が間に合わないことがあります。ご了承ください。
・当日は講師への質問することができます。可能な範囲で個別質問にも対応いたします。
・本講座で使用される資料や配信動画は著作物であり、録音・録画・複写・転載・配布・上映・販売等を禁止いたします。
・本講座はお申し込みいただいた方のみ受講いただけます。複数端末から同時に視聴することや複数人での視聴は禁止いたします。
・Zoomのグループにパスワードを設定しています。部外者の参加を防ぐため、パスワードを外部に漏洩しないでください。
 万が一部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。

 


プログラム                                                                                   

【10:00~12:00】
【第1部】機械学習による異常検知技術とその導入、実装のポイント

大阪大学 産業科学研究所 准教授 福井 健一氏

【講演趣旨】
近年、産業界において機械学習による異常検知が注目を集めています。本セミナーでは、機械学習による異常検知の基礎から始まり、代表的な異常検知法の概説、振動データを用いた回転機器の異常検知に関する研究事例紹介、そしてPythonによる異常検知の実装例とそのポイントを解説します。機械学習による異常検知の導入を考えている方や、検討を始めている方に最適なセミナーです。複雑な数式による説明は避け、概念的な理解や実際に使用する際に重要となる部分を中心に丁寧に説明します。

【講演項目】
1.<基礎編>機械学習による異常検知
  1.1 基本的考え方
  1.2 評価指標
  1.3 代表的な異常検知手法
    1.3.1 ホテリング理論による異常検知
    1.3.2 One-class SVM
    1.3.3 Local Outlier Factor
    1.3.4 Isolation Forest

2.<事例紹介>振動データに基づく回転機器の異常検知

3.<実装編>Pythonによる異常検知実装例の解説
  3.1 各種異常検知法の比較
  3.2 振動データに基づく回転機器の異常検知への適用

【質疑応答】

---------------------------------------------------------------


【12:45~14:45】
【第2部】未知の異常、故障を検出するインバリアント分析と導入の仕方

日本電気(株) AI・アナリティクス事業部 シニアマネージャ 相馬 知也氏

【講演趣旨】
製造業やプラント運転の現場において人工知能を使った異常検知が脚光を浴びて数年が経過している。また経済産業省も産業界のDX化を進めようとスマート保安の導入政策を進めている。ここの背景にあるのが機械学習をはじめとする人工知能技術の発展である。しかしいざこのような技術を利用とすると異常データがほとんどないことに気づき、導入が壁に当たってしまうことも多いと思われる。 本講演では異常データを必要としない、かつ未知の異常検知技術としてインバリアント分析技術とその派生となるモデルフリー分析を取り上げ導入事例やデモを交えて紹介する。またすでに導入している事業者がどのような目的/観点で導入を決めたのか、導入効果などについても紹介する。

【講演項目】
1.スマート保安の現状と今後の方向性
  1.1 経産省におけるスマート保安への取り組み
  1.2 各社の取り組み状況

2.IoT×AI技術と現場活用
  2.1 AI/IoTを現場に適用するときの考え方と注意点
  2.2 AI技術の特徴

3.現場で活用できるインバリアント技術
  3.1 インバリアント分析技術とは
  3.2 インバリアント分析導入事例
    3.2.1 導入事例一覧
    3.2.2 各業種ごとの概要紹介

4.学習モデルを作らない異常検知技術
  4.1 モデルフリー分析とは
  4.2 導入事例

5.現場導入のポイント
  5.1 現場導入時に注意するポイント
  5.2 失敗する原因
  5.3 進め方の手順

【質疑応答】
---------------------------------------------------------------


【15:00~17:00】
【第3部】正常時の波形データのみで異常を検知する

                説明性の高いAIの開発とその使い方

(株)東芝 研究開発センター 知能化システム研究所

     システムAIラボラトリー、スペシャリスト 山口 晃広氏

【講演趣旨】
近年、インダストリアルIoTの普及に伴い、インフラ設備や製造装置にセンサを取り付けて時系列波形データを収集する環境は整ってきた。しかし、このような設備や装置では異常の発生は稀なため、異常データの収集は正常データに比べて困難であり、正常データのみでAIを学習できることが求められる。一方、インフラ設備や製造装置で異常を検知した場合には、専門家が波形データを確認して原因究明や対策立案を行うことが多い。そのため、AIの結果を専門家が理解しやすい説明性も求められる。本講演では、時系列波形データの分析手法及び基本的な異常検知手法や評価方法などを説明し、我々の開発した正常波形データのみで学習する説明性の高い異常検知手法OCLTSを解説する。

【講演項目】
1.一般的なAIによるクラス分類
  1.1 問題設定
  1.2 簡単なAIによるクラス分類のアプローチ
  1.3 古典的なクラス分類手法(サポートベクトルマシン; SVM)

2.AIの説明性
  2.1 AIの説明性という課題
  2.2 AIの説明性に求められる要件
  2.3 AIで説明性を実現するアプローチ

3.説明性の高い時系列波形データ分類手法
  3.1 時系列波形データの特徴や課題
  3.2 説明性のある時系列波形分類手法(shapelets学習法)
  3.3 複数センサ(多変量)への拡張

4.異常検知手法
  4.1 異常データが少ないという課題
  4.2 異常データが少ない場合のアプローチ
    (オーバー&アンダーサンプリング及び コストセンシティブ学習)
  4.3 異常データを学習時に必要としない異常検知手法
    (1クラスSVM; OCSVM 等)
  4.4 異常データが少ない場合の評価指標
    (再現率, 適合率, F値, ROC曲線, AUC)

5.正常波形データのみで学習する説明性の高い異常検知手法OCLTS
  5.1 利用方法
  5.2 学習アルゴリズム
  5.3 公開時系列波形データセット
  5.4 工場等の時系列波形データへの適用評価

【質疑応答】


セミナーの詳細についてお気軽にお問い合わせください。

  • HOME
  • 製品・技術 書籍・通信講座情報
  • イベント セミナー情報
  • ご意見箱
  • 会社概要
  • お問い合わせ