製造業関連情報総合ポータルサイト@engineer
WEB営業力強化支援サービスのご案内
製造業のための技術系セミナー/書籍/通信教育/雑誌
技術情報協会はセミナー・出版・通信教育を通じて企業の最前線に立つ研究者、技術者をサポートします!
イベント

【Live配信セミナー 5/23】電子機器の熱設計、熱対策

  • このエントリーをはてなブックマークに追加
  • @engineer記事クリップに登録
化学・エレクトロニクス:セミナー  / 2024年04月01日 /  化学・樹脂 電子・半導体 試験・分析・測定
イベント名 電子機器の熱設計、熱対策
開催期間 2024年05月23日(木)
10:30~16:30
会場名 ZOOMを利用したLive配信 ※会場での講義は行いません
会場の住所 東京都
お申し込み期限日 2024年05月22日(水)15時
お申し込み

<セミナー No.405424>

 

【Live配信セミナー】

電子機器の熱設計、熱対策

 

 

★ 放熱経路の確保、放熱、冷却、断熱、耐熱、遮熱を使用するポイントを徹底解説!

------------------------------------------------------------------------------------------------

■講師

神上コーポレーション(株) 代表取締役 鈴木 崇司 氏
神上コーポレーション(株) 顧問 多胡 隆司 氏

 

■聴講料

1名につき55,000円(消費税込・資料付き)

1社2名以上同時申込の場合1名につき49,500円(税込)

大学、公的機関、医療機関の方には割引制度があります。詳しくはお問い合わせください。

 

■Live配信セミナーの受講について
・下記リンクから視聴環境を確認の上、お申し込みください。
 → https://zoom.us/test
・開催日が近くなりましたら、視聴用のURLとパスワードをメールにてご連絡申し上げます。セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
・Zoomクライアントは最新版にアップデートして使用してください。
 Webブラウザから視聴する場合は、Google Chrome、Firefox、Microsoft Edgeをご利用ください。
・セミナー資料はお申込み時にお知らせいただいた住所へお送りいたします。お申込みが直前の場合には、開催日までに資料の到着が間に合わないことがあります。ご了承ください。
・当日は講師への質問することができます。可能な範囲で個別質問にも対応いたします。
・本講座で使用される資料や配信動画は著作物であり、録音・録画・複写・転載・配布・上映・販売等を禁止いたします。
・本講座はお申し込みいただいた方のみ受講いただけます。複数端末から同時に視聴することや複数人での視聴は禁止いたします。
・Zoomのグループにパスワードを設定しています。部外者の参加を防ぐため、パスワードを外部に漏洩しないでください。万が一部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。

プログラムああああああああああああああああああああああああああああああああああああ

【講座概要】
 近年、ICT/IoTなどの電子基板を搭載する機器が増加しています。もちろん、これまで基もデバイスや家電にも基板が組み込まれています。そして現在、これらの電子基板は、半導体が高性能化し熱の発生量が増えており、熱対策がますます重要となっています。熱対策には機構設計、回路設計、ソフトウェア設計の各段階で対策を講じることができますが、ソフトウェア制御が必要な場合、性能に影響を及ぼす可能性があるため、できる限り回避する傾向があります。ハードウェア面における熱対策を考慮することは、顧客満足度を向上させる手段と言えるでしょう。 私たちは、ハードウェア面における熱対策として、基板/回路設計の視点と機構/構造設計の視点から、熱の取り扱い方を提案させていただきます。特に、放熱を促進する設計や材料など、最新の技術動向や放熱性を最大限に活用するための断熱の要素を組み込む提案についても説明させていただきます。

【受講対象】
ハード開発若手設計者
熱対策を構築したいプロジェクトマネージャー

【受講後、習得できること】
電子機器熱設計の基礎
熱対策方法

【プログラム】

1.熱の三原則と電子機器の熱設計トレンド
 1.1 熱の三原則(伝導・対流・放射)
 1.2 最近の熱設計トレンド(小型電子機器)
 1.3 ペルチェ素子と原理

2.回路/基板による熱設計と対策
 2.1 電子回路の発熱とその仕組み
 2.2 信頼性を設計する~発熱による影響とディレーティング~
 2.3 発熱の削減技術
  2.3.1 低抵抗化(デバイス選定、駆動方法、回路上の工夫など)
  2.3.2 低電圧化(FPGAやCPUなどで使われる低消費電力化技術とIOでの注意点)
  2.3.3 低速化(クロック制御(ソフトウェア制御)による熱マネージメント)
 2.4 半導体の放熱設計~放熱と熱抵抗~
  2.4.1 半導体素子の熱設計、熱抵抗と放熱経路の基本
  2.4.2 実際の機器での放熱
   ①放熱器(ディスクリート素子)
   ②放熱パッド
   ③ヒートスプレッダ

3.回路 不具合事例
 3.1 電源回路素子発熱に伴う周辺部品温度上昇
    (輻射熱による温度上昇に起因する不具合)
 3.2 MOS FET電源ON/OFF回路における電源電圧変動によるON抵抗の変化と制御素子の発熱(バッテリー(Li系)大電流回路等での不具合)
 3.3 放熱パッド付面実装電源ICにおける温度上昇
    (放熱不足:熱伝導(伝達)経路設計の不備による不具合)
3.4 高精度アナログ回路の冷却による不具合とその対処
   (冷却で性能が低下した?)

4.発熱(温度)の確認、実機での計測と気を付けるべきポイント

5.構造熱設計の勘どころ
 5.1 TIM(Thermal Interface Materials)の種類と特徴・使い分けのコツ
  ①放熱(熱伝導)シート
  ②サーマル(熱伝導)グリス/接着剤/パテ
  ③放熱(熱伝導)両面テープ
  ④相変化材料(PCM)
 5.2 TIM:ギャップフィラーマテリアルの位置づけ
 5.3 放熱材料:具体的材料
 5.4 放熱部品、断熱、耐熱、遮熱
 5.5 気をつけよう低温火傷
 5.6 放熱検討部位とそのポイント(適切な使い分け)

6.熱構造設計に起因する不具合事例
 6.1 熱対策は設計初期からか、不具合がわかってからか
 6.2 グラファイトシートの使い方間違い

7.熱シミュレーション(CAE)
 7.1 熱抵抗(計算)
 7.2 シミュレーションのコツと解析結果の考察方法
  7.2.1 簡易熱CAE(熱分布)
  7.2.2 パワーモジュール熱CAE

8.まとめ


【質疑応答】

 

 

セミナーの詳細についてはお気軽にお問い合わせください。

 

2名以上同時にお申込される場合、2人目以降の方の情報は【弊社への連絡事項がございましたら、こちらにお書きください】欄にご入力をお願いいたします。