8/25 医薬品開発のためのPython入門 <基礎から薬物動態予測の適用事例まで> 【ExcelおよびPythonを使ったハンズオンセミナー】
| イベント名 | 医薬品開発のためのPython入門 <基礎から薬物動態予測の適用事例まで> 【ExcelおよびPythonを使ったハンズオンセミナー】 |
|---|---|
| 開催期間 |
2023年08月25日(金)
~ 2023年09月04日(月)
【Live受講】 2023年8月25日(金) 10:30~16:30 【アーカイブ受講】 2023年9月4日(月) まで受付(配信期間:9/4~9/15) ※会社・自宅にいながら受講可能です※ |
| 会場名 | 【ZoomによるLive配信セミナー】アーカイブ配信付き |
| 会場の住所 | オンライン |
| お申し込み期限日 | 2023年09月04日(月)16時 |
| お申し込み受付人数 | 30 名様 |
| お申し込み |
|
医薬品開発のためのPython入門
<基礎から薬物動態予測の適用事例まで>
【ExcelおよびPythonを使ったハンズオンセミナー】
~教師あり学習(分類問題と回帰問題)および教師なし学習(次元圧縮およびクラスター解析)~
ステップ2)
教師なし学習(次元圧縮およびクラスター解析)についてExcelおよびPythonを使って、ハンズオンでわかりやすく紹介します。
|
<事前にGoogleで「Anaconda」を検索し、「Anaconda Individual Edition」のインストールをお願いします。 ※ソースコードも配布しますので、すぐに実践することが可能です。 |
| 【Live配信受講者 限定特典のご案内】
当日ご参加いただいたLive(Zoom)配信受講者限定で、特典(無料)として
「アーカイブ配信」の閲覧権が付与されます。
オンライン講習特有の回線トラブルや聞き逃し、振り返り学習にぜひ活用ください。 |
| 講師 |
(株)メドインフォ 代表取締役 医学博士 嵜山 陽二郎 氏
【専門】
医療統計学、薬物動態学、データマイニング、機械学習、医療経済学、臨床研究・疫学研究
【執筆など】
薬効薬理非線形モデリング
(Sakiyama Y.et al. Nippon Yakurigaku Zasshi 2008, 132: 199-206.)
機械学習による薬物動態予測
(Sakiyama Y.et al. Expert Opinion of Drug Metabolism and Toxicology, 2009, 5: 149-169.)
【簡単な経歴】
1993 東京大学医学系研究科博士課程 終了
1993-2014 製薬企業(ファイザー(株)、グラクソスミスクライン(株)など)にて統計解析実務および社員教育に従事
2015- 株式会社メドインフォ設立 代表取締役
【講師紹介】
| セミナー趣旨 |
最近、プログラミング言語として、Pythonが注目の的となっています。Pythonは汎用のスクリプト言語で、多くのプログラミング言語の中でも多目的で使用でき、簡単であり、また無料であるという特長があります。医薬品開発の世界では、Pythonはプログラミングに馴染みのない医療従事者には敷居が高いものとなっていますが、システム連携を考慮した良質のパッケージでのデータ分析を目指すのであれば、Pythonは長い目で見て優れたツールといえます。
◆講習会のねらい◆
本講座では、先ずPythonの基礎を学びます。初めての方でも、インストール方法含めわかりやすく解説します。次いで、機械学習における教師あり学習(分類問題と回帰問題)および教師なし学習(次元圧縮およびクラスター解析)についてExcelおよびPythonを使ってハンズオンでわかりやすく紹介します。医薬品開発との関連では、薬物動態の予測についての適用事例を加えました。ソースコードも配布しますので、すぐに実践することが可能です。是非この機会に講座への参加をお待ちしております。
| セミナー講演内容 |
1. 機械学習の基礎知識
(1)機械学習とは
(2)Pythonと機械学習
(3)環境構築
a. OSとフレームワーク
b. CPUとGPU
c. NumPy
d. matplotlib
e. scikit-learn
f. Jupiter
g. Anacondaのインストール
h. Pythonの実行
2. 分類問題
(1)分類問題とは
a. 学習テストとテストセット
b. ホールドアウトと交差検証
c. k-分割交差検証
d. 正答率・適合率・再現率・F値・ROC曲線下面積
(2)いろいろな分類器
a. 決定木
b. Random Forest
c. AdaBoost
d. Naive Bayes
e. サポートベクターマシン(SVM)
(3)薬物動態データでの適用事例
a. 薬物動態を機械学習により予測する
b. 肝ミクロソーム分画での安定性の予測
c. 計算時間の問題
3. 回帰問題
(1)回帰問題の基礎
a. 最小二乗法
b. 線形単回帰
c. 線形重回帰
4. 次元圧縮
(1)次元の呪い
a. 過学習
b. 情報量規準
(2)次元圧縮
a. 主成分分析
b. 主成分得点・固有値・因子負荷量
5. クラスタリング
(1)階層的クラスタリング手法
a. Excelによる最短距離法
b. Excelによるウォード法
(2)非階層的クラスタリング手法
a. k-means法
b. 自己組織化マップ
c. scikit-learnを用いたデータのクラスタリング
6. 深層学習
(1)機械学習から発展した深層学習
a. 畳み込みニューラルネットワーク(CNN)
b. 再帰型ニューラルネットワーク(RNN)
c. 物体検出
7. おわりに
□質疑応答□
※詳細・お申込みは上記
「お申し込みはこちらから」(遷移先WEBサイト)よりご確認ください。
- サイト内検索
- ページカテゴリ一覧
- 新着ページ
-
- 3/30まで申込み受付中 【オンデマンド配信】 ラボにおける 監査証跡/レビュー方法(いつ・誰が・項目・頻度・レベル)と 分析機器毎のレビュー例 (2025年12月12日)
- 1/30 無機ナノ粒子の合成、表面処理・表面修飾と分散技術 (2025年12月12日)
- 2/25 タンパク質凝集のメカニズムと 予測・阻害と安定化・長期保存の実現 (2025年12月12日)
- 1/30 ゾル-ゲル法の基礎と材料合成、 (新規)材料開発で活用するための 実用的な総合知識 (2025年12月12日)
- 1/22 実装状態での電子部品・基板の 品質不具合に対する故障解析力・解決力の向上 (2025年12月12日)
- 1/23 原子間力顕微鏡(AFM)の基礎理論と高精度測定技術 (2025年12月12日)
- 1/22 国内外における 食品用容器包装および器具・接触材料の 法規制の動向把握と必要な対応 (2025年12月12日)
- 1/28 <クリーン化技術ノウハウ> クリーンルームにおけるゴミ・異物対策 および静電気対策の基礎と実践 (2025年12月12日)
- 1/27 外観検査における 目視検査&自動検査での品質チェック・ノウハウ ~よくある品質トラブルへの対策~ (2025年12月12日)
- 1/26 <粘弾性挙動並びに時間-時間温度換算則の理解> プラスチック成形品の残留の応力発生機構と解放機構 ~粘弾性に起因する残留応力の発生と解放を予測する~ (2025年12月12日)


![足で稼ぐ営業を見直しませんか?[営業支援サービスのご案内] 足で稼ぐ営業を見直しませんか?[営業支援サービスのご案内]](https://www.atengineer.com/pr/science_t/color/images/btn_wps.png)