イベント名 | 【オンデマンド配信】 多孔質材料(多孔体)の基礎と応用展開 ~最新のテーマを例にして~ |
---|---|
開催期間 |
2023年10月30日(月)
23:59まで申込受付中 /収録日:2023年4月11日(火) /映像時間:4時間10分 (期間中は何度でも視聴可) ※会社・自宅にいながら受講可能です※ |
会場名 | 【オンデマンド配信】 ※何度でも・繰り返し視聴可能です。 |
会場の住所 | オンライン |
お申し込み期限日 | 2023年10月30日(月)23時 |
お申し込み |
|
【オンデマンド配信】
多孔質材料(多孔体)の基礎と応用展開
~最新のテーマを例にして~
■ゼオライト、活性炭、シリカゲル、ナノ多孔体、メソポーラス物質■
■多孔性配位高分子(PCP)、金属有機構造体(MOF)、PCP/MOF■
■多孔質材料(多孔体)を総括的に最近のトレンドを含め徹底解説!■
★ 俯瞰的に現状、課題と最近のトレンド、解決策へのヒントを解説いたします!
講師 |
クイーンズランド大学 教授/名古屋大学 教授 山内 悠輔 氏
セミナー趣旨 |
ゼオライト、活性炭、シリカゲル に代表されるナノ空間を有する多孔質材料は、環境、エネルギー、光学、医療、エレクトロニクスなどの幅広い分野での応用が期待されている。2013年からの国の戦略目標である「選択的物質貯蔵・輸送・分離・変換等を実現する物質中の微細な空間空隙構造制御技術による新機能材料の創製」に基づき、いくつかのPRESTOとCREST(例えば、CREST:超空間制御に基づく高度な特性を有する革新的機能素材等の創製、さきがけ:超空間制御と革新的機能創成など)が立ち上がっている。ナノ多孔体は、高い比表面積と大きな細孔容積のような独特の特徴を持つことで、伝統的にはゼオライトが研究されてきており、1990年代からメソポーラス物質の研究が世界中で活発になってきた。特に、メソポーラス物質に関しては、日本からも稲垣フェロー・黒田(早大)らのFMS-16の開発、堂免教授による結晶性遷移金属酸化物の開発など、これまでいくつもの重要な研究成果が出ている。しかしながら(僭越ながら)、本物質系の骨格組成としてはシリカ系(絶縁体)と 限られた金属酸化物(半導体含)に限定されており、応用先としても触媒担体、(光)触媒、吸着など少し限られてしまっているように思える。また、従来の手法では「完全」結晶体の多孔体の合成も容易でなく、産業界では結果的に結晶微粉末の方が効果が良く実用向きというのが、これまでの一般的な考え方として定着してしまっているように思える。残念でならない。
JSTの大型研究としては、2000年から始まっている相田ナノ空間ERATO(東大)では、超分子化学に基づき、多くの空間素材を生み出した。一方、錯体化学の方でも、金属イオンと有機配位子による多孔性配位高分子(PCP)(別名:金属有機構造体、MOF)の研究は、2007年から北川統合細孔プロジェクト(京大)によりサポートされている。このERATOの開始により、MOFの研究は世界的に劇的に成長したと言える。また、 藤田教授(東大)は自己組織化による金属と有機の構造体からなる新しい配位錯体を発見し、これらはJST-ACCEL(自己組織化技術に立脚した革新的分子構造解析)によりサポートされてきた。上記の日本を代表する先生方の貢献は、日本の空間物質の高い基礎研究のレベルを世界に示していると言える。しかしながら、有機種を基本ユニットとする空間物質、又は有機配位子と金属イオンの「配位結合」からなるPCP/MOFは、ガス吸着、分離、分子認識などとしての応用には最適であるが、(電極) 触媒 、キャパシタ、二次電池、燃料電池などへの応用を考えると、原子が共有結合または金属結合によって結合されている安定な無機固体で骨格を形成した新規な多孔質材料を発見する必要がある。これらの多孔体は、地球規模の環境およびエネルギーに関する深刻な問題を解決することができる他、これまでとは異なる応用の道が開ける。本コースでは、古典的な多孔体物質から最新の研究例まで幅広く解説を行う。
セミナー講演内容 |
<得られる技術・知識>
古典的な多孔体物質から最新の研究例まで幅広く解説を行う。
<プログラム>
1.多孔体とは
1.1 多孔体の種類
1.2 多孔体の合成法
1.3 多孔体の分析方法
1.4 多孔体の応用例
1.5 最新の研究を例にして
2.マイクロポーラス物質
2.1 マイクロポーラス物質の特徴
2.2 例1:ゼオライト
2.3 例2:有機金属構造体
2.4 その他のマイクロポーラス物質
2.5 最新の研究を例にして
3.マクロポーラス物質
3.1 マクロポーラス物質の特徴
3.2 マクロポーラス物質の例
3.3 マクロポーラス物質の合成法
3.4 マクロポーラス物質の応用
3.5 最新の研究を例にして
4.メソポーラス物質
4.1 一般的な特徴
4.2 一般的な合成法
4.3 一般的な構造解析
4.4 一般的な応用例
4.5 最新の研究を例にして
5.最近のトレンド
5.1 ハイブリッド
5.2 最新の研究を例にして
6.まとめ
■Q&A■
このセミナーに関する質問に限り、講師とメールにて個別Q&Aをすることができます。
具体的には、セミナー資料に講師のメールアドレスを掲載していますので、セミナーに関する質問がございましたら、直接メールでご質問ください。
(ご質問の内容や時期によっては、ご回答できない場合がございますのでご了承下さい。)
※詳細・お申込みは上記
「お申し込みはこちらから」(遷移先WEBサイト)よりご確認ください。
- サイト内検索
- ページカテゴリ一覧
- 新着ページ
-
- 9/9 ASEAN における医療機器の動向 および規制・薬事申請のポイント (2025年09月02日)
- 9/10 粘着・剥離現象の基礎と可視化実験・モデリング (2025年09月02日)
- 9/19 一変・軽微変更の判断基準・承認齟齬・ 回収リスクを未然に防ぐ実務と教育の工夫 (2025年09月02日)
- 9/11 抗体医薬品をはじめとした バイオ医薬品の特性解析(構造解析)と 規格及び試験方法(ペプチドマップ、糖鎖プロファイル) (2025年09月02日)
- 9/19 水素および燃料電池システムの基礎と最新動向 (2025年09月02日)
- 9/19 ALD(原子層堆積法)の基礎と プロセス最適化および最新技術動向 (2025年09月02日)
- 9/12 PVA(ポリビニルアルコール)の 基礎知識と機能化設計 (2025年09月02日)
- 9/16,26 再生医療等製品の 不純物等を含むCMC薬事文書、CTD-Q作成のポイントと 製造・品質試験の実際 (2025年09月02日)
- 9/19 開発初期段階・市場データが不足している場合の 売上予測・調査方法 (2025年09月02日)
- 9/18 改正QMS省令に伴う滅菌製品製造における 外部委託先管理/施設監査の注意すべきポイントと 滅菌バリデーション基準の要求事項 (2025年09月02日)