製造業関連情報総合ポータルサイト@engineer
WEB営業力強化支援サービスのご案内
研究・技術・事業開発のためのセミナー/書籍 サイエンス&テクノロジー
イベント

6/19 ゼータ電位入門 微粒子の分散・凝集をDLVO理論に基づいて徹底解説

  • このエントリーをはてなブックマークに追加
  • @engineer記事クリップに登録
粉体・微粒子・分散技術 分析・評価・品質管理  / 2025年05月07日 /  化学・樹脂 試験・分析・測定
イベント名 ゼータ電位入門 微粒子の分散・凝集をDLVO理論に基づいて徹底解説
開催期間 2025年06月19日(木) ~ 2025年07月02日(水)
【Live配信】2025年6月19日(木)10:30~16:30
【アーカイブ配信】2025年7月2日(水)まで受付
(視聴期間:7/2~7/15)
※会社・自宅にいながら受講可能です※
会場名 【Live配信(Zoom使用)受講】もしくは【アーカイブ配信受講】
会場の住所 オンライン
お申し込み期限日 2025年07月02日(水)16時
お申し込み受付人数 30  名様
お申し込み
お申し込みはこちらから

ゼータ電位入門
微粒子の分散・凝集をDLVO理論に基づいて徹底解説

~ゼータ電位・ハマカー定数を理解し分散系の設計・評価スキルを習得~
~ナノ粒子の分散・凝集をDLVO理論や計算手法、実例で丁寧に解説~

 

受講可能な形式:【Live配信】or【アーカイブ配信】
「微粒子が上手く分散しない…」「粒子の凝集が制御できない…」
「安定性の計算式が分からない…」
このような課題をお持ちではありませんか?  

 本セミナーでは、ナノ粒子・微粒子分散系の安定性評価における標準理論であるDLVO理論に基づき、ゼータ電位の基礎から応用までを徹底的に解説します。分散・凝集のメカニズムを理解し、電気泳動移動度の測定やゼータ電位の計算、分散安定性の評価方法、エクセルを用いたポテンシャル曲線の描き方、安定性マップの作成方法などについても
基礎から丁寧に解説します。 
 
【本セミナーで学べる内容】
 ◆ ナノ粒子・微粒子の分散・凝縮メカニズムとDLVO理論による分散安定性の評価
 ◆ 界面電気現象の基礎 -拡散電気二重層、微粒子の電荷と電場・電位の関係-
 ◆ ゼータ電位(分散促進因子)とハマカー定数(凝集促進因子)の完全理解
 ◆ 電気泳動移動度とゼータ電位の測定・計算方法
 ◆ エマルションや高分子被覆粒子における電気泳動
 ◆ 濃厚系・有機溶媒系といった、水系・非水系における微粒子の動的電気泳動
 ◆ Excelを用いたポテンシャル曲線の描き方、凝集確率と安定度比の計算方法  

 
キーワード: ゼータ電位、微粒子分散系、ハマカー定数、DLVO理論、ポテンシャル曲線、電気泳動移動度、分散安定性マップ
 
【得られる知識】
・ゼータ電位(分散促進因子)とハマカー定数(凝集促進因子)の完全理解。
・電気泳動移動度の測定法とゼータ電位の計算法の習得。
・DLVO理論の完全理解。
・エクセルによるナノ粒子・微粒子間相互作用のポテンシャル曲線と分散安定性マップの描き方の習得。
 
【対象】
本セミナーは、ナノ粒子・微粒子の分散・凝集に関するDLVO理論とその基礎にあるゼータ電位の評価法に関心のある技術者、研究者、製品開発担当者、品質管理・生産技術担当者を対象としています。とくに、化学・材料、製薬・バイオ、化粧品、食品、塗料・インク、セラミックス・電子材料、環境・水処理分野において分散・凝集の制御に携わる方に適しています。理論の基礎から応用までを幅広く解説し、研究や実務に役立つ知識を提供します。
  
 講師

 

東京理科大学 名誉教授/総合研究院 界面科学研究部門 客員教授 理学博士 

大島 広行 氏 

 

≫【講師紹介】

 

 セミナー趣旨

 

 ナノ粒子・微粒子分散系の安定性評価の標準理論であるDLVO理論に基づいてゼータ電位の基礎から応用まで解説する。キーワードはゼータ電位(分散促進因子)とハマカー定数(凝集促進因子)である。電気泳動移動度の測定とゼータ電位の求め方について解説する。分散・凝集を定量的に評価するためのポテンシャル曲線と分散系の安定性を予測する安定性マップの描き方について詳述する。

 

 セミナー講演内容

 

0. はじめに:自然界の意志(自然を支配する原理)
 0.1 確率の大きい状態へ:エントロピー(無秩序さの度合)を増やしたい 
  <斥力的な作用>
 0.2 力に逆らわない→ポテンシャルエネルギー(力に逆らっている度合)を下げたい
  (力に逆らうと、エネルギーが上がってしまう) <引力的な作用>
 0.3 力とポテンシャルエネルギー(力に逆らっている度合)の関係

1. ナノ粒子・微粒子集団は必ず凝集する
 1.1 分子間に引力がないと分子集団から微粒子(分子集合体)はできない
 1.2 分子間に働く普遍的なファンデルワールス引力
 1.3 微粒子表面の分子は微粒子内部の分子に比べ高エネルギー状態にある
 1.4 微粒子間に斥力がなければ、分散媒質との親和性が強くない限り、微粒子集団は必ず凝集する
 1.5 エネルギーと電位の尺度;熱エネルギー4×10-21 Jと25 mVが基準値
 1.6 ポテンシャル曲線の谷と山の意味:山を越えられるか、谷から抜け出せるか

2. 分子間引力とナノ粒子・微粒子間引力
 2.1 微粒子間引力は分子間に働くファンデルワールス引力を合計したもの
 2.2 微粒子集団の凝集促進因子:ハマカー定数
 2.3 分散の目安:ハマカー定数に打ちかつ微粒子間斥力が必要
 2.4 似た者同士は引き合う「類は友を呼ぶ」
 2.5 疎水性粒子と親水性粒子

3. 微粒子間引力に対抗する微粒子間斥力を得る方法:何かで粒子表面を覆う
 3.1 静電斥力:対イオンの雲で粒子表面を覆う
 3.2 高分子等で粒子表面を被覆:立体相互作用

4. 界面電気現象の基礎
 4.1 水系と非水系(有機溶媒系)の違い:誘電率の差(誘電率の大きな水と小さな油)
 4.2 電荷と電場・電位の関係
 4.3 帯電微粒子は裸ではなく拡散電気二重層(対イオンの雲)で覆われている
 4.4 拡散電気二重層の厚さと微粒子表面の電位が界面電気現象を支配する
 4.5 ポアソン・ボルツマンの式
 4.6 微粒子集団の分散促進因子:ゼータ電位(表面電位にほぼ等しい)
 4.7 分散の目安:熱エネルギーに相当するゼータ電位25mVが基準

5. 電気泳動移動度の測定とゼータ電位を計算する式:
  ゼータ電位は直接測定する量ではなく計算から求める。どの式を用いるべきかが重要

 5.1 電気泳動とゼータ電位
 5.2 スモルコフスキーの式:大きな固体粒子に適用、形状によらない
 5.3 ヒュッケルの式:小さな固体粒子や非水系(有機溶媒系)に適用
 5.4 ヘンリーの式:任意のサイズでゼータ電位が50mV以下の球状固体粒子に適用
 5.5 円柱状固体粒子の場合:粒子の方向について平均をとると球と大差ない
 5.6 ゼータ電位が50mV以上では緩和効果(拡散電気二重層の変形)が重要になる 
 5.7 緩和効果を考慮した式:任意のサイズとゼータ電位をもつ球状固体粒子に適用
 5.8 種々の理論式の適用範囲
 5.9 測定例

6. エマルションと柔らかい粒子(高分子で被覆した粒子)の電気泳動
 6.1 エマルションは同じゼータ電位をもつ固体粒子より速く泳動する
 6.2 ヘルマン・藤田の球状高分子電解質の電気泳動理論
 6.3 柔らかい粒子の電気泳動は固体粒子と全く異なる
 6.4 柔らかい粒子か固体粒子かの見分け方
 6.5 柔らかい粒子の電気泳動移動度の解析法と実例

7. 沈降電位、濃厚系、非水系(有機溶媒系)の電気泳動および動的電気泳動:CVP法とESA法
 7.1 沈降電位:CVPと同じ原理
 7.2 体積分率が1%を超えると濃厚系の扱いが必要
 7.3 動的電気泳動:CVP法とESA法
 7.4 非水系(有機溶媒系)では、粒子の電荷が非常に大きいと電荷に依存しない
   一定の電気泳動移動度を示すようになる:対イオン凝縮効果

8. 微粒子間の静電反発エネルギー: DLVO理論
 8.1 1個の粒子に働く力
 8.2 2個の粒子間の静電斥力:拡散電気二重層の重なりが引き起こす対イオンの浸透圧増加
 8.3 DLVO理論:分散安定性を説明する標準理論

9. 分散系の安定性を評価する方法:エクセルを用いたポテンシャル曲線の描き方
 9.1 全相互作用エネルギーとナノ粒子・微粒子分散系の安定性
 9.2 安定性のわかるマップ:ポテンシャルの山の高さが熱エネルギーkTの15倍あると安定
 9.3 凝集確率と安定度比の計算法
 9.4 柔らかい粒子の場合
 9.5 エクセルプログラム
 9.6 非水系(有機溶媒系)における球状粒子間の全相互作用のポテンシャル曲線
 9.7 結論

□質疑応答□

※詳細・お申込みは上記

「お申し込みはこちらから」(遷移先WEBサイト)よりご確認ください。

 

サイト内検索
ページカテゴリ一覧
新着ページ
月別ページ