製造業関連情報総合ポータルサイト@engineer
WEB営業力強化支援サービスのご案内
研究・技術・事業開発のためのセミナー/書籍 サイエンス&テクノロジー
イベント

1/26 AI外観検査(画像認識)の はじめ方、すすめ方、精度の向上

  • このエントリーをはてなブックマークに追加
  • @engineer記事クリップに登録
分析・評価・品質管理 ICT・情報処理  / 2025年12月12日 /  産業機械機器 電子・半導体
イベント名 AI外観検査(画像認識)の はじめ方、すすめ方、精度の向上
開催期間 2026年01月26日(月) ~ 2026年02月13日(金)
【ライブ配信】2026年1月26日(月)13:00~16:30
【アーカイブ配信】2026年2月13日(金)まで受付
(視聴期間:2/13~2/27)

※会社・自宅にいながら受講可能です。
※講義中の録音・撮影はご遠慮ください。
※開催日の概ね1週間前を目安に、最少催行人数に達していない場合、セミナーを中止することがございます。

【配布資料】
PDFデータ(印刷可・編集不可)
※ライブ配信受講は開催2日前を目安にS&T会員のマイページよりダウンロード可となります。
※アーカイブ配信受講は配信開始日からダウンロード可となります。
会場名 【ライブ配信(Zoom使用)受講】もしくは【アーカイブ配信受講】
会場の住所 オンライン
お申し込み期限日 2026年02月13日(金)16時
お申し込み受付人数 30  名様
お申し込み

AI外観検査(画像認識)の
はじめ方、すすめ方、精度の向上

~高精度識別の外観自動検査を実現する知識とノウハウ~

 

受講可能な形式:【ライブ配信】or【アーカイブ配信】のみ
 
【オンライン配信】
ライブ配信(Zoom) ►受講方法・接続確認申込み前に必ずご確認ください
アーカイブ配信 ►受講方法・視聴環境確認申込み前に必ずご確認ください

 
画像認識技術の基礎・原理、画像認識システムの実際、導入実例・運用方法
AI画像認識システムの基礎、取り組み方、
画像データ・画像情報の集め方、準備・前処理、識別根拠の課題と品質保証への対応
  
 講師

 

兵庫県立大学 大学院工学研究科 電子情報工学専攻 准教授 博士(工学) 

森本 雅和 氏

 

 セミナー趣旨

 

 ここ数年、AI(人工知能)の応用が急速に進展しています。DeepLearning(深層学習)が劇的な認識率の向上をもたらしてAI分野を発展させ、生成AIがその応用範囲を広げています。かたや、製造現場ではAI外観検査(画像識別)を中心に導入プロジェクトが立ち上がっていますが、狙った識別精度が得られず、導入に至らない例が聞かれます。学習データ(画像データ)の前処理(データクレンジング)にかかる負担や良品・不良品データの不均衡がおもな原因にあげられます。また、特にDeep Learningでは識別にかかる根拠がわかりにくく、品質保証の観点から導入を見送る現場も多いです。


 そこで、本講座は中小製造現場でいくつかの導入実績をあげた講師が、自身が手がけたAI外観検査の取り組みを紹介。活動事例を通じて、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までを解説します。さらには、導入後の運用を通じての精度向上のための考え方にも触れます。

 

 セミナー講演内容

 

1.AI画像認識システムの開発実例紹介
 1-1 パン識別システム「BakeryScan」
 1-2 不織布の外観検査システム
 1-3 油圧部品の外観検査システム
 1-4 金属チェーンの外観検査システム
 1-5 レンガの外観検査システム

2.AI外観検査プロジェクトのはじめ方
 2-1 AI外観検査の進め方・概念実証(PoC)
 2-2 機械学習を意識した画像データの撮影
 2-3 学習が難しい画像
 2-4 学習しやすい画像のための前処理

3.学習データの量と質の課題
 3-1 学習データの準備にかかる負荷(画像の収集、ラベルの付与)
 3-2 学習データはどの程度必要か
 3-3 外観検査における学習データ不均衡の問題
 3-4 学習データの拡張,生成AIの活用
 3-5 ラベル付き公開データセットと転移学習による対応
 3-6 生成AIの活用

4.識別根拠の課題と品質保証への対応
 4-1 Deep Learningは内部分析が困難
 4-2 説明可能人工知能(XAI)
 4-3 Grad-CAMによる注目領域確認
 4-4 品質保証への対応・段階的なAI外観検査の導入

5.AI外観検査システム導入の進め方まとめ
 5-0 外部資金の獲得
 5-1 不良品の定義確認と不良品サンプルの収集
 5-2 撮影方法の検討
 5-3 撮影装置の導入とデータ収集からPoC
 5-4 初期判定モデルを作成し,プロトタイプとして導入
 5-5 モデル改良と精度検証の繰り返し
 5-6 本格運用開始後の維持管理
 5-7 外観検査プロジェクトを成功させるために

質疑応答

 

※詳細・お申込みは上記

「お申し込みはこちらから」(遷移先WEBサイト)よりご確認ください。

 

サイト内検索
ページカテゴリ一覧
新着ページ
月別ページ